Login / Signup

Mechanistic Insights into the Ni-Catalyzed Reductive Carboxylation of C-O Bonds in Aromatic Esters with CO2 : Understanding Remarkable Ligand and Traceless-Directing-Group Effects.

Yan-Li HanBing-Yuan ZhaoKun-Yao JiangHui-Min YanZhu-Xia ZhangWen-Jing YangZhen GuoYan-Rong Li
Published in: Chemistry, an Asian journal (2018)
The mechanism of the Ni0 -catalyzed reductive carboxylation reaction of C(sp2 )-O and C(sp3 )-O bonds in aromatic esters with CO2 to access valuable carboxylic acids was comprehensively studied by using DFT calculations. Computational results revealed that this transformation was composed of several key steps: C-O bond cleavage, reductive elimination, and/or CO2 insertion. Of these steps, C-O bond cleavage was found to be rate-determining, and it occurred through either oxidative addition to form a NiII intermediate, or a radical pathway that involved a bimetallic species to generate two NiI species through homolytic dissociation of the C-O bond. DFT calculations revealed that the oxidative addition step was preferred in the reductive carboxylation reactions of C(sp2 )-O and C(sp3 )-O bonds in substrates with extended π systems. In contrast, oxidative addition was highly disfavored when traceless directing groups were involved in the reductive coupling of substrates without extended π systems. In such cases, the presence of traceless directing groups allowed for docking of a second Ni0 catalyst, and the reactions proceed through a bimetallic radical pathway, rather than through concerted oxidative addition, to afford two NiI species both kinetically and thermodynamically. These theoretical mechanistic insights into the reductive carboxylation reactions of C-O bonds were also employed to investigate several experimentally observed phenomena, including ligand-dependent reactivity and site-selectivity.
Keyphrases