Login / Signup

Methionine-balanced diets improve cattle performance in fattening young bulls fed high-forage diets through changes in nitrogen metabolism.

Gonzalo Cantalapiedra-HijarI Ortigues-MartyB SepchatE TitgemeyerL Bahloul
Published in: The British journal of nutrition (2020)
Ruminants fed high-forage diets usually have a low feed efficiency, and their performances might be limited by methionine (Met) supply. However, the INRA feeding system for growing cattle does not give recommendation for this amino acid (AA). This study aimed to assess the effects of Met-balanced diets on animal performance and N metabolism in young bulls fed high-forage diets formulated at or above protein requirements. Four diets resulting from a factorial arrangement of two protein levels (Normal (13·5 % crude protein) v. High (16·2 % crude protein)) crossed with two Met concentrations (unbalanced (2·0 % of metabolisable protein) v. balanced (2·6 % of metabolisable protein)) were tested on thirty-four fattening Charolais bulls for 7 months before slaughter. Animal growth rate was greater in Met-balanced diets (+8 %; P = 0·02) with a trend for a greater impact in High v. Normal protein diets (P = 0·10). This trend was observed in lower plasma concentrations of branched-chain AA only when Met supplementation was applied to the Normal protein diet (P ≤ 0·06) suggesting another co-limiting AA at Normal protein level. Feed conversion efficiency and N use efficiency were unaffected by Met supplementation (P > 0·05). However, some plasma indicators suggested a better use of AA when High protein diets were balanced v. unbalanced in Met. The proportion of total adipose tissue in carcass increased (+5 percent units; P = 0·03), whereas that of muscle decreased on average 0·8 percent units (P = 0·05) in Met-balanced diets. Our results justify the integration of AA into dietary recommendations for growing cattle.
Keyphrases
  • amino acid
  • weight loss
  • protein protein
  • adipose tissue
  • tyrosine kinase
  • binding protein
  • metabolic syndrome
  • small molecule
  • insulin resistance
  • clinical practice
  • middle aged