Corrosion Measurement of the Atmospheric Environment Using Galvanic Cell Sensors.
Daiming YangHongwei MeiLiming WangPublished in: Sensors (Basel, Switzerland) (2019)
An atmospheric corrosion monitor (ACM) is an instrument used to track the corrosion status of materials. In this paper, a galvanic cell sensor with a simple structure, flexible parameters, and low cost was proposed for constructing a novel ACM, which consisted of three layers: the upper layer was gold, used as the cathode; the lower layer was corroded metal, used as the anode; and the middle layer was epoxy resin, used to separate the cathode and anode. Typically, the anode and epoxy resin were hollowed out, and the hollow parts were filled with electrolyte when it was wet to form a corrosive galvanic cell. Specifically, the corrosion rate was obtained by measuring the short circuit current of the cell. The sensor was made of a printed circuit board (PCB) or flexible printed circuit (FPC) and a metal coupon, which allowed for early control of the electrical parameters (including sensitivity and capacity) and could be combined with various metals. Additionally, the sensor feasibility was studied in water droplet experiments, during which the corrosive current changed with the electrolyte evaporation. The sensor practicability was also verified in a salt spray test, and the electric charge was compared using the thickness loss of bare coupons. A contrast test was also conducted for the corrosivity of different sensors made of aluminum, iron and copper.