High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement.
Xinhui LiBo LiuJian WangShuxuan LiXin ZhenJiapeng ZhiJunjie ZouBei LiZhong-Hui ShenXin ZhangShujun ZhangCe-Wen NanPublished in: Nature communications (2024)
Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid Al 2 O 3 layers, exhibits a high energy density of 18.9 J/cm 3 with a high energy efficiency of ~ 91% at elevated temperature of 200°C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37°C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250°C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.