Evaluation and development of deep neural networks for image super-resolution in optical microscopy.
Chang QiaoDi LiYuting GuoChong LiuTao JiangQionghai DaiDong LiPublished in: Nature methods (2021)
Deep neural networks have enabled astonishing transformations from low-resolution (LR) to super-resolved images. However, whether, and under what imaging conditions, such deep-learning models outperform super-resolution (SR) microscopy is poorly explored. Here, using multimodality structured illumination microscopy (SIM), we first provide an extensive dataset of LR-SR image pairs and evaluate the deep-learning SR models in terms of structural complexity, signal-to-noise ratio and upscaling factor. Second, we devise the deep Fourier channel attention network (DFCAN), which leverages the frequency content difference across distinct features to learn precise hierarchical representations of high-frequency information about diverse biological structures. Third, we show that DFCAN's Fourier domain focalization enables robust reconstruction of SIM images under low signal-to-noise ratio conditions. We demonstrate that DFCAN achieves comparable image quality to SIM over a tenfold longer duration in multicolor live-cell imaging experiments, which reveal the detailed structures of mitochondrial cristae and nucleoids and the interaction dynamics of organelles and cytoskeleton.
Keyphrases
- deep learning
- high resolution
- neural network
- high frequency
- convolutional neural network
- image quality
- artificial intelligence
- high speed
- single molecule
- transcranial magnetic stimulation
- mass spectrometry
- air pollution
- working memory
- machine learning
- computed tomography
- optical coherence tomography
- magnetic resonance imaging
- magnetic resonance
- healthcare
- single cell
- photodynamic therapy
- dna methylation
- fluorescence imaging