Login / Signup

The symmetrical quasi-classical approach to electronically nonadiabatic dynamics applied to ultrafast exciton migration processes in semiconducting polymers.

Ruibin LiangStephen J CottonRobert BinderRainer HeggerIrene BurghardtWilliam H Miller
Published in: The Journal of chemical physics (2018)
In the last several years, a symmetrical quasi-classical (SQC) windowing model applied to the classical Meyer-Miller (MM) vibronic Hamiltonian has been shown to be a simple, efficient, general, and quite-accurate method for treating electronically nonadiabatic processes at the totally classical level. Here, the SQC/MM methodology is applied to ultrafast exciton dynamics in a Frenkel/site-exciton model of oligothiophene (OT) as a model of organic semiconductor polymers. In order to keep the electronic representation as compact and efficient as possible, the adiabatic version of the MM Hamiltonian was employed, with dynamical calculations carried out in the recently developed "kinematic momentum" representation, from which site/monomer-specific (diabatic) excitation probabilities were extracted using a new procedure developed in this work. The SQC/MM simulation results are seen to describe coherent exciton transport driven by planarization of a central torsion defect in the OT oligomer as well as to capture exciton self-trapping effects in good agreement with benchmark quantum calculations using the multi-layer multiconfiguration time-dependent Hartree approach. The SQC/MM calculations are also seen to significantly outperform the standard Ehrenfest approach, which shows serious discrepancies. These results are encouraging, not only because they illustrate a significant further application of the SQC/MM approach and its utility, but because they strongly suggest that classical mechanical simulations (with the potential for linear scaling efficiency) can be used to capture, quantitatively, important dynamical features of electronic excitation energy transfer in semiconducting polymers.
Keyphrases