Login / Signup

Tuning Ceramic Surface to Minimize the Ionic Resistance at the Interface between PEO- and LATP-Based Ceramic Electrolyte.

Léa Rose ManganiDidier DevauxAnass BenayadChristian JordyRenaud Bouchet
Published in: ACS applied materials & interfaces (2024)
New battery technologies are currently under development, and among them, all-solid-state batteries should deliver better electrochemical performance and enhanced safety. Composite solid electrolytes, combining a solid polymer electrolyte (SPE) and a ceramic electrolyte (CE), should then provide high ionic conductivity coupled to high mechanical stability. To date, this synergy has not yet been reached due to the complexity of the Li-ion transport within the hybrid solid electrolyte, especially at the SPE/CE interface currently considered the limiting step. Yet, there is no proper kinetic model to elucidate the parameters influencing this interfacial barrier. The limited understanding of the SPE/CE interface can be partly explained by scattered SPE/CE interface resistances reported in the literature as well as the lack of systematic studies. Herein, we propose a systematic study of the effect on the SPE/CE interfacial resistance of chemical and thermal treatments of a model LATP-based ceramic based on a methodology relying on electrochemical impedance spectroscopy (EIS) and X-ray photoemission spectroscopy (XPS). The results provide different levers for the optimization of this interface and valuable insights into experimental precautions needed to obtain more reproducible results.
Keyphrases