Login / Signup

Fully Bio-Based Polymer Composites: Preparation, Characterization, and LCD 3D Printing.

Giovanna ColucciFrancesca SacchiFederica BondioliMassimo Messori
Published in: Polymers (2024)
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) and tetrahydrofurfuryl acrylate (THFA). Then, two fillers derived from different industrial wastes, corn (GTF) and wine (WPL-CF) by-products, were added to the AESO-based formulations to develop polymer composites with improved properties. The printability by LCD of the photocurable formulations was widely studied. Bio-based objects with different geometries were realized, showing printing accuracy, layer adhesion, and accurate details. The thermo-mechanical and mechanical properties of the 3D-printed composites were tested by TGA, DMA, and tensile tests. The results revealed that the agro-wastes' addition led to a remarkable increase in the elastic modulus, tensile strength, and glass transition temperature in the glassy state for the systems containing IBOMA and for flexible structures in the rubbery region for systems containing THFA. AESO-based polymers demonstrated tunable properties, varying from rigid to flexible, in the presence of different diluents and biofillers. This finding paves the way for the use of this kind of composite in applications, such as biomedical for the realization of prostheses.
Keyphrases