Login / Signup

Application of Potassium after Waterlogging Improves Quality and Productivity of Soybean Seeds.

Muhammad Abdullah Al Mamunnull JulekhaUmakanta SarkerMuhammad Abdul MannanMohammad Mizanur RahmanMd Abdul KarimSezai ErcisliRomina Alina Vlaic MarcKirill Sergeyevich Golokhvast
Published in: Life (Basel, Switzerland) (2022)
Potassium (K) improves the stress tolerance of crop plants, which varies on the timing of K application and crop varieties. Soybean is a promising crop that can easily fit with the cropping pattern during kharif I season, when water logging occurs due to sudden rain. Therefore, an experiment was conducted to determine the effect of K management on the productivity and seed quality of soybean under normal and waterlogged conditions. The treatments comprised three factors, namely soybean genotypes (BU Soybean-1 and BU Soybean-2), waterlogging (WL) (control and WL for 4 days at the flowering stage (FS)), and K application (full dose as basal and 50% as basal +50% as top dress after termination of the flooding). The trial was laid out in a randomized complete block design with three replications. Findings revealed that BU Soybean-1 produced a higher number of pods and seeds pod -1 under control conditions with basal application of K. On the other hand, BU Soybean-2 produced taller plants and heavier grain, improving grain and straw yield under WL conditions when K was top dressed. The varieties absorbed a higher amount of nitrogen, phosphorus, and potassium under control conditions compared to WL when K was top dressed. Similarly, the seed protein content of both varieties was higher in the control condition with a top dressing of K. However, a higher percentage of seed germination was obtained from BU Soybean-2 in the control condition with a top dressing of K. Further, more electrical conductivity and more mean germination time were recorded in the case of BU Soybean-2 under WL with the basal application of K. Split application of 50% of recommended K fertilizer after the recession of flood water could be suggested for improved grain yield in flood-affected soybean growing areas.
Keyphrases
  • climate change
  • clinical trial
  • risk assessment