Capture-SELEX of DNA Aptamers for Estradiol Specifically and Estrogenic Compounds Collectively.
Chenqi NiuChong ZhangJiaying XiePublished in: Environmental science & technology (2022)
Estrogenic compounds such as estrone (E1), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2) are serious environmental contaminants due to their potent biological activities. At least six selections were previously reported to obtain DNA aptamers for E2, highlighting its environmental importance. A careful analysis revealed that the previous aptamers either are too long or do not bind optimally. Herein, a series of new aptamers were obtained from the capture-SELEX method with dissociation constants down to 30 nM as determined by isothermal titration calorimetry (ITC). Two aptamers were converted to structure-switching fluorescent biosensors, which achieved a limit of detection down to 3.3 and 9.1 nM E2, respectively. One aptamer showed similar binding affinities to all the three estrogens, while the other aptamer is more selective for E2. Both aptamers required Mg 2+ for binding. The proposed sensors were successfully applied in the determination of E2 in wastewater. Moreover, comparisons were made with previous aptamers based on primary sequence alignment and secondary structures. Among previously reported truncated aptamers, ITC showed binding only in one of them. The newly selected aptamers have the combined advantages of small size and high affinities.