A physiologically-based digital twin for alcohol consumption-predicting real-life drinking responses and long-term plasma PEth.
Henrik PodéusChristian SimonssonPatrik NasrMattias EkstedtStergios KechagiasPeter LundbergWilliam LövforsGunnar CedersundPublished in: NPJ digital medicine (2024)
Alcohol consumption is associated with a wide variety of preventable health complications and is a major risk factor for all-cause mortality in the age group 15-47 years. To reduce dangerous drinking behavior, eHealth applications have shown promise. A particularly interesting potential lies in the combination of eHealth apps with mathematical models. However, existing mathematical models do not consider real-life situations, such as combined intake of meals and beverages, and do not connect drinking to clinical markers, such as phosphatidylethanol (PEth). Herein, we present such a model which can simulate real-life situations and connect drinking to long-term markers. The new model can accurately describe both estimation data according to a χ 2 -test (187.0 < T χ2 = 226.4) and independent validation data (70.8 < T χ2 = 93.5). The model can also be personalized using anthropometric data from a specific individual and can thus be used as a physiologically-based digital twin. This twin is also able to connect short-term consumption of alcohol to the long-term dynamics of PEth levels in the blood, a clinical biomarker of alcohol consumption. Here we illustrate how connecting short-term consumption to long-term markers allows for a new way to determine patient alcohol consumption from measured PEth levels. An additional use case of the twin could include the combined evaluation of patient-reported AUDIT forms and measured PEth levels. Finally, we integrated the new model into an eHealth application, which could help guide individual users or clinicians to help reduce dangerous drinking.