Login / Signup

Evaluation of Lung Cancer Patient Response to First-Line Chemotherapy by Integration of Tumor Core Biopsy Metabolomics with Multiscale Modeling.

Hunter A MillerDonald M MillerVictor H van BerkelHermann B Frieboes
Published in: Annals of biomedical engineering (2022)
The standard of care for intermediate (Stage II) and advanced (Stages III and IV) non-small cell lung cancer (NSCLC) involves chemotherapy with taxane/platinum derivatives, with or without radiation. Ideally, patients would be screened a priori to allow non-responders to be initially treated with second-line therapies. This evaluation is non-trivial, however, since tumors behave as complex multiscale systems. To address this need, this study employs a multiscale modeling approach to evaluate first-line chemotherapy response of individual patient tumors based on metabolomic analysis of tumor core biopsies obtained during routine clinical evaluation. Model parameters were calculated for a patient cohort as a function of these metabolomic profiles, previously obtained from high-resolution 2DLC-MS/MS analysis. Evaluation metrics were defined to classify patients as Disease-Control (DC) [encompassing complete-response (CR), partial-response (PR), and stable-disease (SD)] and Progressive-Disease (PD) following first-line chemotherapy. Response was simulated for each patient and compared to actual response. The results show that patient classifications were significantly separated from each other, and also when grouped as DC vs. PD and as CR/PR vs. SD/PD, by fraction of initial tumor radius metric at 6 days post simulated bolus drug injection. This study shows that patient first-line chemotherapy response can in principle be evaluated from multiscale modeling integrated with tumor tissue metabolomic data, offering a first step towards individualized lung cancer treatment prognosis.
Keyphrases