Synthesis, crystal structure and investigation of ion-exchange possibility for sodium tellurate NaTeO 3 (OH).
Tsubasa IshiiYue Jin ShanKotaro FujiiTetsuhiro KatsumataHideo ImotoAriunaa BaterdeneKeitaro TezukaMasatomo YashimaPublished in: Dalton transactions (Cambridge, England : 2003) (2024)
A new sodium tellurate has been hydrothermally synthesized and comprehensively analysed using spectroscopic and thermogravimetric techniques, resulting in the determination of its composition as NaTeO 3 (OH). The analysis of synchrotron X-ray and neutron diffraction data indicates that NaTeO 3 (OH) has a crystal structure similar to that of the previously reported tellurate, KTeO 3 (OH), with the space group P 2 1 / a (No. 14). NaTeO 3 (OH) consists of zigzag one-dimensional chains built by edge-sharing TeO 6 octahedra, running parallel to the c -axis and connected to sodium and hydrogen atoms. The hydrogen atoms covalently bond to the terminal oxygen atoms on the one-dimensional chain and also form hydrogen bonds with other terminal oxygen atoms on nearby chains. The structure has been confirmed by optimization using the pseudopotential method and performing Bond Valence Sum (BVS) analysis. Although Li + ions in LiTeO 3 (OH) can be exchanged reversibly with H + ions, no ion exchange behaviour is observed in NaTeO 3 (OH). The difference is attributed to the size of the alkali ions and their crystal structure.