Login / Signup

Collaborative Solutions for Interference Management in GNSS-Based Aircraft Navigation.

Mario NicolaGianluca FalcoRuben Morales FerreElena-Simona LohanAlberto de la FuenteEmanuela Falletti
Published in: Sensors (Basel, Switzerland) (2020)
Nowadays, the Global Navigation Satellite Systems (GNSS) technology is not the primary means of navigation for civil aviation and Air Traffic Control, but its role is increasing. Consequently, the vulnerabilities of GNSSs to Radio Frequency Interference, including the dangerous intentional sources of interference (i.e., jamming and spoofing), raise concerns and special attention also in the aviation field. This panorama urges for figuring out effective solutions able to cope with GNSS interference and preserve safety of operations. In the frame of a Single European Sky Air traffic management Research (SESAR) Exploratory Research initiative, a novel, effective, and affordable concept of GNSS interference management for civil aviation has been developed. This new interference management concept is able to raise early warnings to the on-board navigation system about the detection of interfering signals and their classification, and then to estimate the Direction of Arrival (DoA) of the source of interference allowing the adoption of appropriate countermeasures against the individuated source. This paper describes the interference management concept and presents the on-field tests which allowed for assessing the reached level of performance and confirmed the applicability of this approach to the aviation applications.
Keyphrases
  • machine learning
  • deep learning