Near-Field Probing of Microwave Oscillators with Josephson Microscopy.
Ping ZhangJingjing LvShoucheng HouTao LiuXinsheng ChengZihan WeiYang-Yang LyuYong-Lei WangYuan DuLi DuHua-Bing WangPeiheng WuPublished in: Nano letters (2024)
Voltage-controlled oscillators, serving as fundamental components in semiconductor chips, find extensive applications in diverse modules such as phase-locked loops, clock generators, and frequency synthesizers within high-frequency integrated circuits. This study marks the first implementation of superconducting Josephson probe microscopy for near-field microwave detection on multiple voltage-controlled oscillators. Focusing on spectrum tracking, various phenomena, such as stray spectra and frequency drifts, were found under nonsteady operating states. Parasitic electromagnetic fields, originating from power supply lines and frequency divider circuits, were identified as sources of interference between units. The investigation further determined optimal working states by analyzing features of the microwave distributions. Our research not only provides insights into the optimization of circuit design and performance enhancement in oscillators but also emphasizes the significance of nondestructive near-field microwave microscopy as a pivotal tool in characterizing integrated millimeter-wave chips.
Keyphrases
- high frequency
- single molecule
- label free
- transcranial magnetic stimulation
- high resolution
- radiofrequency ablation
- high speed
- high throughput
- optical coherence tomography
- living cells
- primary care
- healthcare
- drinking water
- quantum dots
- molecular dynamics simulations
- quality improvement
- single cell
- real time pcr
- density functional theory