Influence of Different Surface Pretreatments on Shear Bond Strength of an Adhesive Resin Cement to Various Zirconia Ceramics.
Marco ColomboSimone GalloSara PadovanMarco ChiesaClaudio PoggioScribante AndreaPublished in: Materials (Basel, Switzerland) (2020)
The aim of this in vitro study was to assess the influence of surface pretreatment on shear bond strength (SBS) of an adhesive resin cement (G-CEM Link Force TM, GC Corporation, Tokyo, Japan) to three different yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics: (1) Copran Zirconia Monolith HT, COP; (2) Katana ML Zirconia, KAT; and (3) Metoxit Z-CAD HTL Zirconia, MET. In total, 45 cylinders (5 mm in diameter, 1 mm height) for each type of zirconia ceramic were prepared used a computer-aided design and computer-aided manufacturing (CAD/CAM) machine (software CEREC 4.2). Each type of zirconia was subdivided into three groups and each group received a different surface pretreatment; 15 samples were not conditioned as control (groups COP 1, KAT 1, MET 1), 15 samples were air-borne particle abraded with aluminum dioxide particles of 50-μm size at 0.3 MPa for 20 s (groups COP 2, KAT 2, MET 2), and 15 samples were hot-etched with a solution of hydrochloric acid and ferric chloride (groups COP 3, KAT 3, MET 3). After specimen fabrication, the adhesive cement-ceramic interface was analyzed using an SBS test. Subsequently, the adhesive remnant index (ARI) was measured. Data were submitted to statistical analysis. Air-borne particle abraded specimens showed the highest SBS values for COP and KAT groups. For MET, no significant difference was reported between air-borne particle abraded specimens and untreated controls. The lowest values were detected for acid-etched groups. A higher frequency of ARI = "1" and ARI = "2" was reported in control and air-borne particle abraded groups, whereas ARI = "3" was detected in hot-etched groups. No correlation was found between ARI score and shear bond strength. Air-borne particle abrasion is considered the best treatment for Zirconia Copran and Zirconia Katana ML, if it is followed by using dual-curing resin cement.