Login / Signup

Red/far-red light signals regulate the activity of the carbon-concentrating mechanism in cyanobacteria.

Nadav OrenStefan TimmMarcus FrankOliver MantovaniOmer MurikMartin Hagemann
Published in: Science advances (2021)
Desiccation-tolerant cyanobacteria can survive frequent hydration/dehydration cycles likely affecting inorganic carbon (Ci) levels. It was recently shown that red/far-red light serves as signal-preparing cells toward dehydration. Here, the effects of desiccation on Ci assimilation by Leptolyngbya ohadii isolated from Israel's Negev desert were investigated. Metabolomic investigations indicated a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity, and this was accelerated by far-red light. Far-red light negatively affected the Ci affinity of L. ohadii during desiccation and in liquid cultures. Similar effects were evident in the non-desiccation-tolerant cyanobacterium Synechocystis The Synechocystis Δcph1 mutant lacking the major phytochrome exhibited reduced photosynthetic Ci affinity when exposed to far-red light, whereas the mutant ΔsbtB lacking a Ci uptake inhibitory protein lost the far-red light inhibition. Collectively, these results suggest that red/far-red light perception likely via phytochromes regulates Ci uptake by cyanobacteria and that this mechanism contributes to desiccation tolerance in strains such as L. ohadii.
Keyphrases
  • cell proliferation
  • small molecule
  • high resolution
  • amino acid
  • high speed
  • single molecule