Login / Signup

Development and Evaluation of Rifampicin Loaded Alginate-Gelatin Biocomposite Microfibers.

Ameya SharmaVivek PuriPradeep KumarInderbir SinghKampanart Huanbutta
Published in: Polymers (2021)
Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1, RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release were also carried out to explain the comparative understanding of the formulation developed. The antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence they showed significant results, having excellent antimicrobial properties; they could be prominent carriers for wound healing applications.
Keyphrases
  • wound healing
  • drug delivery
  • tissue engineering
  • mycobacterium tuberculosis
  • signaling pathway
  • staphylococcus aureus
  • mental health
  • bone regeneration