Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in Arabidopsis thaliana.
Huayuan FengXinyuan LiDan SunYanshan ChenGuohua XuYue CaoLena Q MaPublished in: Environmental science & technology (2021)
Arsenic (As) contamination in soils is of great concerns due to its toxicity to plants. As an analogue, phosphorus plays an important role in protecting plants from As toxicity. In this study, we identified a new phosphate transporter 2 (PHT2), PvPht2;1, from As-hyperaccumulator Pteris vittata and analyzed its functions in As and P transport in a yeast mutant, and model plant Arabidopsis thalian. PvPht2;1 contained 12 transmembrane domains, sharing high identity with PHT2 genes in diverse plants. Further, independent of external P or As levels, PvPht2;1 was mainly expressed in P. vittata fronds with the expression being 3-4 folds higher than that in the roots and rhizomes. Localized to the chloroplasts based on GFP-fused PvPht2;1 in model plant tobacco, PvPht2;1 functioned as a low-affinity P transporter. Under As exposure, PvPht2;1 yeast transformants showed comparable growth with the control while high-affinity P transporter PvPht1;3 transformants showed better growth, suggesting that PvPht2;1 transported P but slower than PvPht1;3 transporter. Expressing PvPht2;1 in A. thaliana increased its shoot P concentration without influencing its As accumulation. Further, the chloroplasts' P content in transgenic A. thaliana increased by 37-59% than wild-type (WT) plants. Under As exposure, the photosynthesis of PvPht2;1-expressing A. thaliana remained stable but that of WT plants decreased. The data indicate that, under As stress, expressing PvPht2;1 in A. thaliana enhanced its P transport to the chloroplasts and protected its photosynthesis. In short, highly expressed in the fronds and not impacted by As exposure, chloroplast-located PvPht2;1 may have protected As-hyperaccumulator P. vittata from As toxicity by efficiently transporting only P to its chloroplasts.