Vibrational and electronic spectra of protonated vanillin: exploring protonation sites and isomerisation.
Alejandro Gutiérrez-QuintanillaBaptiste MogeIsabelle CompagnonJennifer A NoblePublished in: Physical chemistry chemical physics : PCCP (2024)
Photofragmentation spectra of protonated vanillin produced under electrospray ionisation (ESI) conditions have been recorded in the 3000-3700 cm -1 (vibrational) and 225-460 nm (electronic) ranges, using room temperature IRMPD (infrared multiphoton dissociation) and cryogenic UVPD (ultraviolet photodissociation) spectroscopies, respectively. The cold (∼50 K) electronic UVPD spectrum exhibits very well resolved vibrational structure for the S 1 ← S 0 and S 3 ← S 0 transitions, suggesting long excited state dynamics, similar to its simplest analogue, protonated benzaldehyde. The experimental data were combined with theoretical calculations to determine the protonation site and configurational isomer observed in the experiments.