Melissa officinalis essential oil loaded polycaprolactone membranes: evaluation of antimicrobial activities and cytocompatibility for tissue engineering applications.
Zeynep IyigündoğduBetul Sena PetekMerve Capkin YurtseverSeda CeylanPublished in: Biomedical materials (Bristol, England) (2023)
Antimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore, Melissa officinalis essential oil (MEO) was investigated against 10 types of microorganisms and remarkable antimicrobial activity was demonstrated. PCL:MEO membranes were prepared by solvent casting method by mixing MEO into PCL in various ratios (PCL:0M, PCL:0.25M, PCL:0.5M, and PCL:1M w/w). Water contact angle measurements showed that hydrophilicity of the membranes increased with increasing concentrations of MEO from 103.44o to 83.36o for PCL:0M and PCL:1M, respectively. It was determined that there was an inverse relationship between the MEO concentration and the mechanical properties. Notable antioxidant activity of PCL/MEO membranes was exhibited by the inhibition percent of DPPH which was increased from 24.74% to 44.79% for PCL:0M and PCL:1M, respectively. The antimicrobial activity of MEO was also highly maintained in PCL membranes. For PCL/MEO membranes, at least 99.9% of microorganisms were inhibited. Cytocompatibility of the membranes were investigated by resazurin assay, SEM analysis and DAPI staining. PCL:0.25M and PCL:0.5M membranes supported the viability of L929 cells more than 87% when compared to PCL:0M membranes on day 6. However, the viability of L929 cells on PCL:1M membranes was about 43% indicating significant decrease on cellular activity. In conclusion, PCL:0.25M and PCL:0.5M membranes with their high antimicrobial activity, acceptable mechanical properties and cytocompatible properties, they can be considered as an alternative biomaterial for tissue engineering applications.
.