Login / Signup

Impact of FRET between Molecular Aggregates and Quantum Dots.

Partha MaityThumuganti GayathriSurya Prakash SinghHirendra N Ghosh
Published in: Chemistry, an Asian journal (2019)
Energy transfer has been employed in third-generation solar cells for the conversion of light into electrical energy. Long-range nonradiative energy transfer from semiconductor quantum dots (QDs) to fluorophores has been demonstrated by using CdS QDs and thiophene-BODIPY (boron dipyrromethene, abbreviated as TG2). TG2 shows a broad photoluminescence (PL) spectrum, which varies with concentration. At very low concentrations, monomeric units are present; then, upon increasing the concentration, these monomers form a mixed (J-/H-)aggregated state. Energy transfer between the CdS QDs and TG2 was confirmed by separately investigating the interactions between CdS and the monomer of TG2 and between CdS and the aggregated states of TG2. Size-dependent PL quenching confirmed that nonradiative Förster resonance energy transfer (FRET) from photoexcited CdS QDs to the J-aggregate state of TG2 was the major energy-relaxation channel, which occurred on the timescale of hundreds of fs. These results have broad applications in the field of light harvesting based on the assembly of molecular aggregates.
Keyphrases
  • energy transfer
  • quantum dots
  • sensitive detection
  • solar cells
  • mass spectrometry
  • high resolution
  • room temperature
  • molecularly imprinted