Prediction of tumor board procedural recommendations using large language models.
Marc AubrevilleJonathan GanzJonas AmmelingEmely RosbachThomas GehrkeAgmal ScherzadStephan HackenbergMiguel GoncalvesPublished in: European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery (2024)
Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.