Login / Signup

Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae.

Longjiang FanXiongbiao XuXiuling YangZhenghe LiXueping Zhou
Published in: Viruses (2018)
Geminiviruses are a group of small single-stranded DNA viruses that replicate in the host cell nucleus. It has been reported that the viral replication initiator protein (Rep) and the conserved common region (CR) are required for rolling circle replication (RCR)-dependent geminivirus replication, but the detailed mechanisms of geminivirus replication are still obscure owing to a lack of a eukaryotic model system. In this study, we constructed a bacterial⁻yeast shuttle plasmid with the autonomous replication sequence (ARS) deleted, which failed to replicate in Saccharomyces cerevisiae cells and could not survive in selective media either. Tandemly repeated copies of 10 geminivirus genomic DNAs were inserted into this deficient plasmid to test whether they were able to replace the ARS to execute genomic DNA replication in yeast cells. We found that yeast cells consisting of the recombinant plasmid with 1.9 tandemly repeated copies of tomato leaf curl Yunnan virus isolate Y194 (TLCYnV-Y194, hereafter referred to as Y194) can replicate well and survive in selective plates. Furthermore, we showed that the recombinant plasmid harboring the Y194 genome with the mutation of the viral Rep or CR was still able to replicate in yeast cells, indicating the existence of a non-canonic RCR model. By a series of mutations, we mapped a short fragment of 174 nucleotides (nts) between the V1 and C3 open reading frames (ORFs), including an ARS-like element that can substitute the function of the ARS responsible for stable replication of extrachromosomal DNAs in yeast. The results of this study established a geminivirus replication system in yeast cells and revealed that Y194 consisting of an ARS-like element was able to support the replication a bacterial⁻yeast shuttle plasmid in yeast cells.
Keyphrases