Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins.
Alan N AminYi-Hsuan LinSuman DasHue Sun ChanPublished in: The journal of physical chemistry. B (2020)
Intrinsically disordered proteins (IDPs) are important for biological functions. In contrast to folded proteins, molecular recognition among certain IDPs is "fuzzy" in that their binding and/or phase separation are stochastically governed by the interacting IDPs' amino acid sequences, while their assembled conformations remain largely disordered. To help elucidate a basic aspect of this fascinating yet poorly understood phenomenon, the binding of a homo or heterodimeric pair of polyampholytic IDPs is modeled statistical mechanically using cluster expansion. We find that the binding affinities of binary fuzzy complexes in the model correlate strongly with a newly derived simple "joint sequence charge decoration" parameter readily calculable from the pair of IDPs' sequence charge patterns. Predictions by our analytical theory are in essential agreement with coarse-grained explicit-chain simulations. This computationally efficient theoretical framework is expected to be broadly applicable to rationalizing and predicting sequence-specific IDP-IDP polyelectrostatic interactions.