One-Step Template/Solvent-Free Pyrolysis for In Situ Immobilization of CoP Nanoparticles onto N and P Co-Doped Carbon Porous Nanosheets towards High-efficiency Electrocatalytic Hydrogen Evolution.
Xiaoxuan FengGuangyao ZhouLinya FangHuan PangJun YangLin XuDongmei SunYawen TangPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
The search for economical, active and stable electrocatalysts towards the hydrogen evolution reaction (HER) is highly imperative for the progression of water electrolysis technology and related sustainable energy conversion technologies. The delicate optimization of chemical composition and architectural configuration is paramount to design high-efficiency non-precious metal HER electrocatalysts. Herein, we report a one-step scalable template/solvent-free pyrolysis approach for in situ immobilizing uniform CoP nanoparticles onto N and P co-doped carbon porous nanosheets (denoted as CoP@N,P-CNSs hereafter). The simultaneous consideration of architectural design and nanocarbon hybridization renders the formed CoP@N,P-CNSs with plentiful well-dispersed anchored active sites, shortened pathway for mass diffusion, enhanced electric conductivity, and reinforced mechanical stability. As a consequence, the optimized CoP@N,P-CNSs exhibit an overpotential of 115 mV to afford a current density of 10 mA cm-2 , small Tafel slope of 74.2 mV dec-1 , high Faradaic efficiency of nearly 100 %, and superb long-term durability in an alkaline medium. Given the fabrication feasibility, mass production potential and outstanding HER performance, the CoP@N,P-CNSs may hold great promise for large-scale electrochemical water splitting. More importantly, the explored one-step template/solvent-free pyrolysis methodology offers a feasible and versatile route to fabricate carbon nanosheet-based nanocomposites for diverse energy conversation-related applications.