dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
Jaewook RyuJunhyeong KimKi-Ho HanPublished in: Lab on a chip (2023)
A cost-effective, simple to use, and automated technique that can provide real-time feedback control for droplet generation is required to obtain droplets with high-throughput, stability, and uniformity. This study introduces a disposable droplet generation microfluidic device (dDrop-Chip) that can simultaneously control both droplet size and production rate in real time. The dDrop-Chip consists of a reusable sensing substrate and a disposable microchannel that can be assembled using vacuum pressure. It also integrates a droplet detector and a flow sensor on-chip, enabling real-time measurement and feedback control of droplet size and sample flow rate. The dDrop-Chip has the additional advantage of being disposable, which can prevent chemical and biological contamination, due to low manufacturing cost by the film-chip technique. We demonstrate benefits of the dDrop-Chip by controlling droplet size at a fixed sample flow rate and the production rate at a fixed droplet size using real-time feedback control. The experimental results show that the dDrop-Chip consistently generates monodisperse droplets with a length of 219.36 ± 0.08 μm (CV 0.036%) at a production rate of 32.38 ± 0.48 Hz using the feedback control, while without feedback control, there is a significant deviation in droplet length (224.18 ± 6.69 μm, CV 2.98%) and production rate (33.94 ± 1.72 Hz) despite the use of identical devices. Therefore, the dDrop-Chip is a reliable, cost-effective, and automated technique for generating droplets of controlled size and production rate in real time, making it suitable for various droplet-based applications.