Whole-Genome Comparison Reveals Structural Variations behind Heading Leaf Trait in Brassica oleracea .
Gaoxiang JiYing LongGuangqin CaiGuixin YanJinfeng WuFugui ZhangLixia LiHao LiQian HuangJinxiong ShenXiaoming WuPublished in: International journal of molecular sciences (2023)
Brassica oleracea displays remarkable morphological variations. It intrigued researchers to study the underlying cause of the enormous diversification of this organism. However, genomic variations in complex heading traits are less known in B. oleracea . Herein, we performed a comparative population genomics analysis to explore structural variations (SVs) responsible for heading trait formation in B. oleracea . Synteny analysis showed that chromosomes C1 and C2 of B. oleracea (CC) shared strong collinearity with A01 and A02 of B. rapa (AA), respectively. Two historical events, whole genome triplication (WGT) of Brassica species and differentiation time between AA and CC genomes, were observed clearly by phylogenetic and Ks analysis. By comparing heading and non-heading populations of B. oleracea genomes, we found extensive SVs during the diversification of the B. oleracea genome. We identified 1205 SVs that have an impact on 545 genes and might be associated with the heading trait of cabbage. Overlapping the genes affected by SVs and the differentially expressed genes identified by RNA-seq analysis, we identified six vital candidate genes that may be related to heading trait formation in cabbage. Further, qRT-PCR experiments also verified that six genes were differentially expressed between heading leaves and non-heading leaves, respectively. Collectively, we used available genomes to conduct a comparison population genome analysis and identify candidate genes for the heading trait of cabbage, which provides insight into the underlying reason for heading trait formation in B. oleracea .