Login / Signup

γ-Cyclodextrin Metal-Organic Frameworks: Do Solvents Make a Difference?

Jia X OhBrent S MurrayAlan R MackieRammile EttelaieAmin SadeghpourRuggero Frison
Published in: Molecules (Basel, Switzerland) (2023)
Conventionally, methanol is the solvent of choice in the synthesis of gamma-cyclodextrin metal-organic frameworks (γ-CD-MOFs), but using ethanol as a replacement could allow for a more food-grade synthesis condition. Therefore, the aim of the study was to compare the γ-CD-MOFs synthesised with both methanol and ethanol. The γ-CD-MOFs were characterised by scanning electron microscopy (SEM), surface area and pore measurement, Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). The encapsulation efficiency (EE) and loading capacity (LC) of the γ-CD-MOFs were also determined for curcumin, using methanol, ethanol and a mixture of the two as encapsulation solvent. It was found that γ-CD-MOFs synthesised by methanol and ethanol do not differ greatly, the most significant difference being the larger crystal size of γ-CD-MOFs crystallised from ethanol. However, the change in solvent significantly influenced the EE and LC of the crystals. The higher solubility of curcumin in ethanol reduced interactions with the γ-CD-MOFs and resulted in lowered EE and LC. This suggests that different solvents should be used to deliberately manipulate the EE and LC of target compounds for better use of γ-CD-MOFs as their encapsulating and delivery agents.
Keyphrases
  • metal organic framework
  • electron microscopy
  • ionic liquid
  • nk cells
  • simultaneous determination
  • high resolution
  • mass spectrometry
  • magnetic resonance imaging
  • carbon dioxide
  • magnetic resonance