Login / Signup

Fusing Carbocycles of Inequivalent Ring Size to a Bis(imino)pyridine-Iron Ethylene Polymerization Catalyst: Distinctive Effects on Activity, PE Molecular Weight, and Dispersity.

Zheng WangGregory A SolanYanping MaQingbin LiuTongling LiangWen-Hua Sun
Published in: Research (Washington, D.C.) (2019)
The 4,6-bis(arylimino)-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-iron(II) chlorides (aryl = 2,6-Me2C6H3 Fe1; 2,6-Et2C6H3 Fe2; 2,6-i-Pr2C6H3 Fe3; 2,4,6-Me3C6H2 Fe4; and 2,6-Et2-4-Me2C6H2 Fe5) have been prepared in good yield by a straightforward one-pot reaction of 2,3,7,8,9,10-hexahydro-1H-cyclohepta[b]quinoline-4,6-dione, FeCl2·4H2O, and the appropriate aniline in acetic acid. All ferrous complexes have been characterized by elemental analysis and FT-IR spectroscopy. In addition, the structure of Fe3 has been determined by single crystal X-ray diffraction, which showed the iron center to adopt a distorted square pyramidal geometry with the saturated sections of the fused six- and seven-membered carbocycles to be cis-configured. In combination with either MAO or MMAO, Fe1-Fe5 exhibited exceptionally high activities for ethylene polymerization (up to 15.86 × 106 g(PE) mol-1 (Fe) h-1 at 40°C (MMAO) and 9.60 × 106 g(PE) mol-1 (Fe) h-1 at 60°C (MAO)) and produced highly linear polyethylene (HLPE, T m ≥ 128°C) with a wide range in molecular weights; in general, the MMAO-promoted polymerizations were more active. Irrespective of the cocatalyst employed, the 2,6-Me2-substituted Fe1 and Fe4 proved the most active while the more sterically hindered 2,6-i-Pr2 Fe3 the least but afforded the highest molecular weight polyethylene (M w : 65.6-72.6 kg mol-1). Multinuclear NMR spectroscopic analysis of the polymer formed using Fe4/MMAO at 40°C showed a preference for fully saturated chain ends with a broad bimodal distribution a feature of the GPC trace (M w/M n = 13.4). By contrast, using Fe4/MAO at 60°C a vinyl-terminated polymer of lower molecular weight (M w = 14.2 kg mol-1) was identified that exhibited a unimodal distribution (M w/M n = 3.8). Moreover, the amount of aluminoxane cocatalyst employed, temperature, and run time were also found to be influential on the modality of the polymer.
Keyphrases
  • metal organic framework
  • aqueous solution
  • visible light
  • high resolution
  • machine learning
  • magnetic resonance
  • magnetic resonance imaging
  • single molecule
  • risk assessment
  • solid state