Login / Signup

Modeling of the Passive Permeation of Mercury and Methylmercury Complexes Through a Bacterial Cytoplasmic Membrane.

Jing ZhouMicholas Dean SmithConnor J CooperXiaolin ChengJeremy C SmithJerry M Parks
Published in: Environmental science & technology (2017)
Cellular uptake and export are important steps in the biotransformation of mercury (Hg) by microorganisms. However, the mechanisms of transport across biological membranes remain unclear. Membrane-bound transporters are known to be relevant, but passive permeation may also be involved. Inorganic HgII and methylmercury ([CH3HgII]+) are commonly complexed with thiolate ligands. Here, we have performed extensive molecular dynamics simulations of the passive permeation of HgII and [CH3HgII]+ complexes with thiolate ligands through a model bacterial cytoplasmic membrane. We find that the differences in free energy between the individual complexes in bulk water and at their most favorable position within the membrane are ∼2 kcal mol-1. We provide a detailed description of the molecular interactions that drive the membrane crossing process. Favorable interactions with carbonyl and tail groups of phospholipids stabilize Hg-containing solutes in the tail-head interface region of the membrane. The calculated permeability coefficients for the neutral compounds CH3S-HgII-SCH3 and CH3HgII-SCH3 are on the order of 10-5 cm s-1. We conclude that small, nonionized Hg-containing species can permeate readily through cytoplasmic membranes.
Keyphrases
  • molecular dynamics simulations
  • room temperature
  • fluorescent probe
  • living cells
  • molecular docking
  • ionic liquid
  • genetic diversity