Energy Landscapes in Photochemical Dissociation of Small Peroxides.
Meisam Farzalipour TabrizNatali ÇizmeciyanÖzgür BirerErsin YurtseverPublished in: The journal of physical chemistry. A (2019)
Organic peroxides are known to have important roles in many chemical and biochemical processes such as intermediates in the oxidation of various hydrocarbons, as initiators of free-radical polymerization and cross-linking agents, etc. Consequently, the study of the organic peroxides and their radicals are of fundamental interest and importance. Although several reaction pathways after dissociation of organic peroxides have been successfully identified using time-resolved optical absorption spectroscopy, interpretation of the data can be complicated due to spectral overlap of parent molecules, intermediates, and products. Therefore, a reliable theoretical framework is necessary in case of complex or less studied systems. In this study, we investigated the plausible thermal dissociation pathways of diethyl peroxide, ditert butyl peroxide, and dicumyl peroxide by density functional theory with M06-2X hybrid functional and compared its results to coupled cluster single double and perturbative triple, CCSD(T), level energies. Our results indicate that methyl radical elimination is the main dissociation mechanism for all of the studied peroxides after O-O bond cleavage which has been also observed in experiments. The resulting relative energies of the M06-2X functional were found to have reasonable accuracy in comparison with the CCSD(T) method. We also show that time-dependent density functional theory (TD-DFT) with the M06-2X functional provides a suitable guide for interpretation of time-resolved optical absorption spectra of peroxides. The experimental transient absorption spectra of dicumyl peroxide are interpreted using the theoretically predicted pathways and transient radical species. Both results agree within experimental resolution and accuracy. We propose that the traditionally assigned visible absorption is not due to the cumuloxyl radical and the photodissociation of dicumyl peroxide involves other pathways with extremely short-lived radicals.
Keyphrases
- density functional theory
- molecular dynamics
- electron transfer
- high resolution
- single molecule
- water soluble
- high speed
- solid state
- cerebral ischemia
- magnetic resonance
- deep learning
- computed tomography
- machine learning
- transcription factor
- artificial intelligence
- molecular docking
- mass spectrometry
- molecular dynamics simulations