Login / Signup

Probing the Strain Direction-Dependent Nonmonotonic Optical Bandgap Modulation of Layered Violet Phosphorus.

Huaipeng WangSicheng LiuZhifang LiuYilin SunDan XieTianling Ren
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
Recent theoretical investigations have well-predicted strain-induced nonmonotonic optical band gap variations in low-dimensional materials. However, few two-dimensional (2D) materials are experimentally confirmed to exhibit nonmonotonic optical band gap variation under varying strain. Here, a strain-induced nonmonotonic optical bandgap variation in violet phosphorus (VP) nanosheets is observed, as evidenced by photoluminescence spectroscopy, which is reported in a few other 2D materials in knowledge. The optical bandgap variations are characterized to show the modulation rates of 41 and -24 meV/% with compression and tensile strains, respectively. Remarkably, first-principle calculations predict and clarify the nonmonotonic modulation accurately, highlighting its relationship with the strain direction-dependent asymmetric distribution of conduction band minimum wavefunctions, demonstrating that this unique nonmonotonic optical bandgap modulation is determined by the distinctive crystal structure of VP. This work provides a deep insight into the design of 2D materials toward optoelectronic and photoelectrochemical applications via strain engineering.
Keyphrases
  • high resolution
  • high speed
  • quantum dots
  • healthcare
  • high glucose
  • escherichia coli
  • molecular dynamics simulations
  • single molecule
  • diabetic rats
  • molecular dynamics
  • risk assessment
  • gold nanoparticles