Login / Signup

Graphene catalyzes the reversible formation of a C-C bond between two molecules.

Juan J NavarroMichele PisarraBelén Nieto-OrtegaJ VillalvaC G AyaniCristina DíazF CallejaR MirandaFernando MartinEmilio M PérezAmadeo L Vazquez de Parga
Published in: Science advances (2018)
Carbon deposits are well-known inhibitors of transition metal catalysts. In contrast to this undesirable behavior, here we show that epitaxial graphene grown on Ru(0001) promotes the reversible formation of a C-C bond between -CH2CN and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ). The catalytic role of graphene is multifaceted: First, it allows for an efficient charge transfer between the surface and the reactants, thus favoring changes in carbon hybridization; second, it holds the reactants in place and makes them reactive. The reaction is fully reversible by injecting electrons with an STM tip on the empty molecular orbitals of the product. The making and breaking of the C-C bond is accompanied by the switching off and on of a Kondo resonance, so that the system can be viewed as a reversible magnetic switch controlled by a chemical reaction.
Keyphrases