Login / Signup

An Iron(II) Ylide Complex as a Masked Open-Shell Iron Alkylidene Species in Its Alkylidene-Transfer Reactions with Alkenes.

Jian LiuLianrui HuLei WangHui ChenLiang Deng
Published in: Journal of the American Chemical Society (2017)
Transition-metal alkylidenes are important reactive organometallic intermediates, and our current knowledge on them has been mainly restricted to those with closed-shell electronic configurations. In this study, we present an exploration on open-shell iron alkylidenes with a weak-field tripodal amido-phosphine-amido ligand. We found that a high-spin (amido-phosphine-amido)iron(II) complex can react with (p-tolyl)2CN2 to afford a high-spin (amido-ylide-amido)iron(II) complex, 2, which could transfer its alkylidene moiety to a variety of alkenes, either the electron-rich or electron-deficient ones, to form cyclopropane derivatives. The reaction of 2 with cis-β-deuterio-styrene gave deuterated cyclopropane derivatives with partial loss of the stereochemical integrity with respect to the cis-styrene. Kinetic study on the cyclopropanation reaction of 2 with 4-fluoro-styrene disclosed the activation parameters of ΔH⧧ = 23 ± 1 kcal/mol and ΔS⧧ = -20 ± 3 cal/mol/K, which are comparable to those of the cyclopropanation reactions involving transition-metal alkylidenes. However, the cyclopropanation of para-substituted styrenes by 2 shows a nonlinear Hammett plot of log(kX/kH) vs σp. By introduction of a radical parameter, a linear plot of log(kX/kH) vs 0.59σp + 0.55σc• was obtained, which suggests the "nucleophilic" radical nature of the transition state of the cyclopropanation step. In corroboration with the experimental observations, density functional theory calculation on the reaction of 2 with styrene suggests the involvement of an open-shell (amido-phosphine-amido)iron alkylidene intermediate that is higher in energy than its (amido-ylide-amido)iron(II) precursor and an "outer-sphere" radical-type mechanism for the cyclopropanation step. The negative charge distribution on the alkylidene carbon atoms of the open-shell states (S = 2 and 1) explains the high activity of the cyclopropanation reaction toward electron-deficient alkenes. The study demonstrates the unique activity of open-shell iron alkylidene species beyond its closed-shell analogues, thus pointing out their potential synthetic usage in catalysis.
Keyphrases