Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Keyphrases
- reduced graphene oxide
- room temperature
- carbon nanotubes
- walled carbon nanotubes
- gold nanoparticles
- metal organic framework
- heavy metals
- transcription factor
- ionic liquid
- magnetic resonance imaging
- oxidative stress
- computed tomography
- molecular dynamics simulations
- endothelial cells
- drinking water
- contrast enhanced
- solar cells