Login / Signup

Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid.

Huaging ZhaoAbdullah M SyedMir M KhalidAi NguyenAlison CilingDi WuWai-Ming YauSanjana SrinivasanDominic EspositoJennifer A DoudnaGrzegorz PiszczekMelanie OttPeter W Schuck
Published in: bioRxiv : the preprint server for biology (2023)
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-) protein into ribonucleoprotein particles (RNPs), 38±10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining mutant proteins in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multi-valent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N- protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Keyphrases