Evaluation of Tacrolimus' Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints.
Wen-Wei FengHsiu-Chao ChenGilbert AudiraMichael Edbert SuryantoFerry SaputraKevin Adi KurniaRoss D VasquezFranelyne P CasugaYu-Heng LaiChung-Der HsiaoChih-Hsin HungPublished in: Biology (2024)
Tacrolimus (FK506) is a common immunosuppressant that is used in organ transplantation. However, despite its importance in medical applications, it is prone to adverse side effects. While some studies have demonstrated its toxicities to humans and various animal models, very few studies have addressed this issue in aquatic organisms, especially zebrafish. Here, we assessed the adverse effects of acute and chronic exposure to tacrolimus in relatively low doses in zebrafish in both larval and adult stages, respectively. Based on the results, although tacrolimus did not cause any cardiotoxicity and respiratory toxicity toward zebrafish larvae, it affected their locomotor activity performance in light-dark locomotion tests. Meanwhile, tacrolimus was also found to slightly affect the behavior performance, shoaling formation, circadian rhythm locomotor activity, and color preference of adult zebrafish in a dose-dependent manner. In addition, alterations in the cognitive performance of the fish were also displayed by the treated fish, indicated by a loss of short-term memory. To help elucidate the toxicity mechanism of tacrolimus, molecular docking was conducted to calculate the strength of the binding interaction between tacrolimus to human FKBP12. The results showed a relatively normal binding affinity, indicating that this interaction might only partly contribute to the observed alterations. Nevertheless, the current research could help clinicians and researchers to further understand the toxicology of tacrolimus, especially to zebrafish, thus highlighting the importance of considering the toxicity of tacrolimus prior to its usage.
Keyphrases
- molecular docking
- spinal cord injury
- oxidative stress
- palliative care
- blood pressure
- liver failure
- aedes aegypti
- emergency department
- atrial fibrillation
- molecular dynamics simulations
- mass spectrometry
- bone marrow
- zika virus
- hepatitis b virus
- gram negative
- respiratory failure
- case control
- dna binding
- mechanical ventilation