Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping.
Yujie CaiYu ChenKonstantin E DorfmanXiaoning XinXiaoying WangKun HuangE WuPublished in: Science advances (2024)
Ultrasensitive spectroscopy is an essential component in mid-infrared (MIR) technology. However, the drawbacks of MIR detectors pose challenges to robust MIR spectroscopy at the single-photon level. We propose an MIR single-photon frequency upconversion spectroscopy nonlocally mapping the MIR information to the time domain. Broadband MIR photons from spontaneous parametric downconversion are frequency-upconverted to the near-infrared band with quantum correlation preservation. Via the group delay of fiber, the MIR spectral information within a 1.18-micrometer bandwidth of 2.76 to 3.94 micrometers is then successfully projected to arrival times of correlated photon pairs. Under the conditions of 6.4 × 10 6 photons per second illumination, the transmission spectra of polymers with single-photon sensitivity are demonstrated using single-pixel detectors. The developed approach circumvents scanning and frequency selection instability, which stands out for its inherent compatibility for evolving environments and scalability for various wavelengths. Because of its high sensitivity and robustness, characterization of biochemical samples and weak measurement of quantum systems are possible to foresee.
Keyphrases