Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols.
Xiao ChenChuang ShiXing-Bao WangWen-Ying LiChanghai LiangPublished in: Communications chemistry (2021)
Designing highly active and stable lead-free palladium-based catalysts without introducing surfactants and stabilizers is vital for large-scale and high-efficiency manufacturing of cis-enols via continuous-flow semi-hydrogenation of alkynols. Herein, we report an intermetallic PdZn/ZnO catalyst, designed by using the coupling strategy of strong electrostatic adsorption and reactive metal-support interaction, which can be used as a credible alternative to the commercial PdAg/Al 2 O 3 and Lindlar catalysts. Intermetallic PdZn nanoparticles with electron-poor active sites on a Pd/ZnO catalyst significantly boost the thermodynamic selectivity with respect to the mechanistic selectivity and therefore enhance the selectivity towards cis-enols. Based on in situ diffuse reflectance infrared Fourier-transform spectra as well as simulations, we identify that the preferential adsorption of alkynol over enol on PdZn nanoparticles suppresses the over-hydrogenation of enols. These results suggest the application of fine surface engineering technology in oxide-supported metal (particles) could tune the ensemble and ligand effects of metallic active sites and achieve directional hydrogenation in fine chemical synthesis.
Keyphrases