Recent advances in lead-free double perovskites for x-ray and photodetection.
Joydip GhoshPaul J SellinP K GiriPublished in: Nanotechnology (2022)
Over the last decade, lead halide perovskites have attracted significant research attention in the field of photovoltaics, light-emitting devices, photodetection, ionizing radiation detection, etc, owing to their outstanding optoelectrical properties. However, the commercial applications of lead-based perovskite devices are restricted due to the poor ambient stability and toxicity of lead. The encapsulation of lead-based devices can reduce the possible leakage of lead. However, it is hard to ensure safety during large-scale production and long-term storage. Recently, considerable efforts have been made to design lead-free perovskites for different optoelectronic applications. Metal halide double perovskites with the general formula of A 2 M I M III X 6 or A 2 M IV X 6 could be potentially considered as green and stable alternatives for different optoelectronic applications. In this review article, we focus on the recent progress and findings on lead-free halide double perovskites for x-ray and UV-vis photodetection applications. Lead-free halide double perovskite has recently drawn a great deal of attention for superior x-ray detection due to its high absorption coefficient, large carrier mobility-lifetime product, and large bulk resistance. In addition, these materials exhibit good performance in photodetection in the UV-vis region due to high photocarrier generation and efficient carrier separation. In this review, first, we define the characteristics of lead-free double perovskite materials. The fundamental characteristics and beneficial properties of halide perovskites for direct and indirect x-ray detection are then discussed. We comprehensively review recent developments and efforts on lead-free double perovskite for x-ray detection and UV-vis photodetection. We bring out the current challenges and opportunities in the field and finally present the future outlook for developing lead-free double perovskite-based x-ray and UV-vis photodetectors for practical applications.