Probabilistic stimulation mapping from intra-operative thalamic deep brain stimulation data in essential tremor.
Dorian VogelTeresa NordinStefanie FeilerKarin WårdellJérôme CosteJean-Jacques LemaireSimone HemmPublished in: Journal of neural engineering (2024)
Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored. Objective. To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim. Approach. A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total: n = 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET. Main results. Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature. Significance. This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.
Keyphrases
- deep brain stimulation
- end stage renal disease
- magnetic resonance imaging
- ejection fraction
- newly diagnosed
- parkinson disease
- obsessive compulsive disorder
- chronic kidney disease
- prognostic factors
- healthcare
- computed tomography
- peritoneal dialysis
- spinal cord
- big data
- magnetic resonance
- wastewater treatment
- climate change
- patient reported outcomes
- contrast enhanced
- molecular dynamics
- genome wide
- monte carlo