Login / Signup
The goal of this computational work is to gain new insight into the photochemistry of the fluorescent protein (FP) LSSmOrange. This FP is of interest because besides exhibiting the eponymous large spectral shift (LSS) between the absorption and emission energies, it has been experimentally observed that it can also undergo a photoconversion process, which leads to a change in the absorption wavelength of the chromophore (from 437 to 553 nm). There is strong experimental evidence that this photoconversion is caused by decarboxylation of a glutamate located in the close vicinity of the chromophore. Still, the exact chemical mechanism of the decarboxylation process as well as the precise understanding of structure-property relations in the measured absorption and emission spectra is not yet fully understood. Therefore, hybrid quantum mechanics/molecular mechanics (QM/MM) calculations are performed to model the absorption and emission spectra of the original and photoconverted forms of LSSmOrange. The necessary force-field parameters of the chromophore are optimized with CGenFF and the FFToolkit. A thorough analysis of QM methods to study the excitation energies of this specific FP chromophore has been carried out. Furthermore, the influence of the size of the QM region has been investigated. We found that QM/MM calculations performed with time-dependent density functional theory (CAM-B3LYP/D3/6-31G*) and QM calculations performed with the semiempirical ZIndo/S method including a polarizable continuum model can describe the excitation energies reasonably well. Moreover, already a small QM region size seems to be sufficient for the study of the photochemistry in LSSmOrange. Especially, the calculated ZIndo spectra are in very good agreement with the experimental ones. On the basis of the spectra obtained, we could verify the experimentally assigned structures.
Keyphrases