Impact of temperature on bite force and bite endurance in the leopard iguana (Diplolaemus leopardinus) in the Andes Mountains.
Nadia VicenziAlejandro LaspiurPaola L SassiRubén MassarelliJohn D KrenzNora Ruth IbargüengoytíaPublished in: The Journal of experimental biology (2020)
In ectotherms, temperature exerts a strong influence on the performance of physiological and ecological traits. One approach to understanding the impact of rising temperatures on animals and their ability to cope with climate change is to quantify variation in thermal-sensitive traits. Here, we examined the thermal biology, temperature dependence and thermal plasticity of bite force (endurance and magnitude) in Diplolaemus leopardinus, an aggressive and territorial lizard endemic to Mendoza province, Argentina. Our results indicate that this lizard behaves like a moderate thermoregulator that uses the rocks of its environment as the main heat source. Bite endurance was not influenced by head morphometry and body temperature, whereas bite force was influenced by head length and jaw length, and exhibited thermal dependence. Before thermal acclimation treatments, the maximum bite force for D. leopardinus occurred at the lowest body temperature and fell sharply with increasing body temperature. After acclimation treatments, lizards acclimated at higher temperatures exhibited greater bite force. Bite force showed phenotypic plasticity, which reveals that leopard iguanas are able to maintain (and even improve) their bite force under a rising-temperature scenario.