Login / Signup

Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders.

Hyeongmin SonSol Moi ParkJoon Ho SeoHaeng Ki Lee
Published in: Materials (Basel, Switzerland) (2019)
This present study investigates the effects of CaSO4 incorporation on the pore structure and drying shrinkage of alkali-activated slag and fly ash. The slag and fly ash were activated at a 5:5 ratio by weighing with a sodium silicate. Thereafter, 0%, 5%, 10%, and 15% of CaSO4 were incorporated to investigate the changes in phase formation and internal pore structure. X-Ray Diffraction (XRD), thermogravimetry (TG)/derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and drying shrinkage tests were carried out to find the correlation between the pore structure and drying shrinkage of the specimens. The results showed that CaSO4 incorporation increased the formation of thenardite, and these phase changes affected the pore structure of the activated fly ash and slag. The increase in the CaSO4 content increased the pore distribution in the mesopore. As a result, the capillary tension and drying shrinkage decreased.
Keyphrases
  • magnetic resonance
  • high resolution
  • municipal solid waste
  • sewage sludge
  • magnetic resonance imaging
  • computed tomography
  • mass spectrometry
  • risk assessment
  • crystal structure
  • solid state