Real-time qPCR coupled with high-resolution melting curve analysis for the detection of the internal transcribed spacer 1 of Angiostrongylus costaricensis.
Joban QuesadaPaula Alfaro-SeguraCarlos Mata-SomarribasJackeline AlgerMazlova ToledoJucicleide Ramos de SouzaJavier MoraCarlos Graeff-TeixeiraAlberto Solano-BarqueroAlicia RojasPublished in: Parasitology research (2024)
Abdominal angiostrongyliasis (AA) is a zoonotic and severe parasitic infection caused by Angiostrongylus costaricensis. AA is currently diagnosed by the observation of A. costaricensis-compatible structures in biopsies or the detection of antibodies in serological tests. However, molecular methods targeting homologous sequences of A. costaricensis have not been designed before, and therefore, an HRM-coupled qPCR was developed to detect the internal transcribed spacer 1 (ITS1) of the parasite. The present assay successfully amplified DNA of A. costaricensis obtained from different hosts and identified slight sequence differences through the HRM analysis. The detection limit of the HRM-qPCR was 0.00036 ng/µL, 1.0 ng/µL, and 0.1 ng/µL when A. costaricensis DNA was diluted in nuclease-free water, whole blood, and sera, respectively, which highlights its potential use for cell-free DNA detection. Moreover, the reaction did not cross-amplify DNA of Angiostrongylus cantonensis, Strongyloides stercoralis, and other nematodes, thus emphasizing its specificity. Additionally, the assay tested positive in formalin-fixed paraffin embedded biopsies with visible A. costaricensis adults or eggs, but not in samples without evident parasites or a low number of larvae, which suggests that the reaction is useful for confirming the presence of the nematode in clinical samples. Finally, DNA of sera from patients with AA was evaluated with the HRM-qPCR but none tested positive, possibly due to long storage periods of the samples which could have led to cfDNA degradation. These results indicate that this assay may be useful in the confirmation of AA and its prospection for cell-free DNA detection protocols.