Login / Signup

Codeposition Modification of Cation Exchange Membranes with Dopamine and Crown Ether To Achieve High K+ Electrodialysis Selectivity.

Shanshan YangYuanwei LiuJunbin LiaoHuawen LiuYuliang JiangBart Van der BruggenJiang-Nan ShenCongjie Gao
Published in: ACS applied materials & interfaces (2019)
Surface modification has been proven to be an effective approach for ion exchange membranes to achieve separation of counterions with different valences by altering interfacial construction of membranes to improve ion transfer performance. In this work, we have fabricated a series of novel cation exchange membranes (CEMs) by modifying sulfonated polysulfone (SPSF) membranes via codeposition of mussel-inspired dopamine (DA) and 4'-aminobenzo-15-crown-5 (ACE), followed by glutaraldehyde cross-linking, aiming at achieving selective separation of specific cations. The as-prepared membranes before and after modification were systematically characterized in terms of their structural, physicochemical, electrochemical, and electrodialytic properties. In the electrodialysis process, the modified membranes exhibit distinct perm selectivity to K+ ions in binary (K+/Li+, K+/Na+, K+/Mg2+) and ternary (K+/Li+/Mg2+) systems. In particular, at a constant current density of 5.0 mA·cm-2, modified membrane M-co-0.50 shows significantly prominent perm selectivity [Formula: see text] in the K+/Mg2+ system and M-co-0.75 exhibits remarkable performance in the K+/Li+ system [Formula: see text], superior to commercial monovalent-selective CEM (CIMS, [Formula: see text], [Formula: see text]). Besides, in the K+/Li+/Mg2+ ternary system, K+ flux reaches 30.8 nmol·cm-2·s-1 for M-co-0.50, while it reaches 25.8 nmol·cm-2·s-1 for CIMS. It possibly arises from the effects of pore-size sieving and the synergistic action of electric field driving and host-guest molecular recognition of ACE and K+ ions. This study can provide new insights into the separation of specific alkali metal ions, especially on reducing influence of coexisting cations K+ and Na+ on Li+ ion recovery from salt lake and seawater.
Keyphrases