Thermally Adjustable Dynamic Disulfide Linkages Mediated by Highly Air-Stable 2,2,6,6-Tetramethylpiperidine-1-sulfanyl (TEMPS) Radicals.
Akira TakahashiRaita GosekiHideyuki OtsukaPublished in: Angewandte Chemie (International ed. in English) (2017)
Intrinsically exchangeable dynamic covalent bonds that can be triggered by readily usable stimuli offer easy incorporation of their dynamic properties in various molecular systems, but the library of such bonds is still being developed. Herein, we report the dynamic covalent chemistry of 2,2,6,6-tetramethylpiperidine-1-sulfanyl (TEMPS) dimers derived from thermally reversible homolytic dissociation of disulfide linkages. High air stability of TEMPS was observed even at 100 °C, affording facile employment of thermal dissociation-association equilibria and adjustable bond exchange properties under atmospheric conditions. We also established an efficient synthetic route for a modifiable derivative of the dimer that enabled incorporation of dynamic properties into linear and network polymer structures. The obtained polymers showed controllable molecular weights, temperature-dependent swelling properties, healing ability, and recyclability, reflecting the thermally tunable dynamics of the dimer.