Login / Signup

Structure and Excitation Spectra of Third-Row Transition Metal Hexafluorides Based on Multi-Reference Exact Two-Component Theory.

Ayaki Sunaga
Published in: Inorganic chemistry (2024)
The structures and some vertical excitation energies of third-row transition metal hexafluorides (MF 6 , M = Re, Os, Ir, Pt, Au, Hg) were calculated using the generalized-active-space configuration interaction (GASCI) theory based on the exact two-component (X2C) Hamiltonian. The spin-orbit coupling (SOC) was included at the Hartree-Fock level, enabling us to analyze the SOC at the orbital level (spinor-representation). The excitation spectra were assigned based on the double group, a relativistic group theory applicable to states with the SOC. This study provides a fundamental understanding of the ligand field splitting, including the SOC, that is useful for the photochemistry and spin chemistry involving heavy elements.
Keyphrases
  • transition metal
  • density functional theory
  • molecular dynamics
  • energy transfer
  • room temperature
  • living cells
  • drug discovery
  • mass spectrometry
  • neural network
  • monte carlo