Login / Signup

Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods.

Evgeny Katz
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2017)
The paper overviews various methods that are used for the analysis of output signals generated by enzyme-based logic systems. The considered methods include optical techniques (optical absorbance, fluorescence spectroscopy, surface plasmon resonance), electrochemical techniques (cyclic voltammetry, potentiometry, impedance spectroscopy, conductivity measurements, use of field effect transistor devices, pH measurements), and various mechanoelectronic methods (using atomic force microscope, quartz crystal microbalance). Although each of the methods is well known for various bioanalytical applications, their use in combination with the biomolecular logic systems is rather new and sometimes not trivial. Many of the discussed methods have been combined with the use of signal-responsive materials to transduce and amplify biomolecular signals generated by the logic operations. Interfacing of biocomputing logic systems with electronics and "smart" signal-responsive materials allows logic operations be extended to actuation functions; for example, stimulating molecular release and switchable features of bioelectronic devices, such as biofuel cells. The purpose of this review article is to emphasize the broad variability of the bioanalytical systems applied for signal transduction in biocomputing processes. All bioanalytical systems discussed in the article are exemplified with specific logic gates and multi-gate networks realized with enzyme-based biocatalytic cascades.
Keyphrases
  • single molecule
  • high resolution
  • induced apoptosis
  • magnetic resonance imaging
  • magnetic resonance
  • gold nanoparticles
  • computed tomography
  • cell death
  • oxidative stress
  • mass spectrometry